El VLT de ESO funciona, por primera vez, como un telescopio de 16 metros.

El instrumento ESPRESSO ve su primera luz con las cuatro unidades de telescopio del VLT a la vez.
Funcionamiento del instrumneto ESPRESSO del VLT de ESO.

El instrumento ESPRESSO, instalado en el Very Large Telescope de ESO, en Chile, ha utilizado por primera vez la luz combinada de sus cuatro telescopios de 8,2 metros. Actualmente, en términos de área colectora de luz, el hecho de combinar las unidades de telescopio de esta manera convierte al VLT en el telescopio óptico más grande.

Uno de los objetivos del diseño original del VLT (Very Large Telescope) de ESO era hacer que sus cuatro unidades de telescopio (UTs) trabajaran juntas para crear un solo telescopio gigante. Con la primera luz del espectrógrafo ESPRESSO, que ha utilizado el modo cuatro unidades de telescopio del VLT, se ha alcanzado este hito [1].

Después de intensos preparativos por parte del consorcio ESPRESSO (liderado por el Observatorio Astronómico de la Universidad de Ginebra, con la participación de centros de investigación de Italia, Portugal, España y Suiza) y el personal ESO, el Director General de ESO, Xavier Barcons, inició estas históricas observaciones astronómicas apretando un botón en la sala de control.

El científico del instrumento ESPRESSO de ESO, Gaspare Lo Curto, explica la importancia histórica de este acontecimiento: "ESO ha hecho realidad un sueño que se remonta a la época en la que el VLT fue concebido, en la década de 1980: ¡combinar la luz de las cuatro unidades de telescopio en Cerro Paranal para enviar la luz a un único instrumento!".

Cuando las cuatro unidades de telescopio, de 8,2 metros cada una, combinan su capacidad colectora de luz para “alimentar” a un solo instrumento, el VLT se convierte, en efecto, en el telescopio óptico más grande del mundo en cuanto a área colectora de luz.

El VLT de ESO observado a vista de pájaro.
Crédito: ESO.
Dos de los principales objetivos científicos de ESPRESSO son el descubrimiento y la caracterización de planetas similares a la Tierra y la búsqueda de la posible variabilidad de las constantes fundamentales de la física. Los experimentos de este último campo en particular, requieren de la observación de cuásares distantes y débiles, y este objetivo científico será el que más se beneficie de la combinación de la luz de las cuatro unidades de telescopio en ESPRESSO. Ambos dependen de una estabilidad del instrumento extremadamente alta y de una fuente de luz de referencia sumamente estable.

Debido a la complejidad que conlleva combinar de este modo la luz de las cuatro unidades de telescopio (en lo que se conoce como un "foco incoherente"), hasta ahora no se había implementado. Sin embargo, durante la construcción de los telescopios se había dejado el espacio necesario y, desde el principio, se habilitó la estructura subterránea en la cima de la montaña [2].

Un sistema de espejos, prismas y lentes transmite la luz de cada unidad de telescopio del VLT al espectrógrafo ESPRESSO, a más de 69 metros de distancia. Gracias a esta óptica compleja, ESPRESSO puede recoger la luz de los cuatro telescopios juntos, aumentando su capacidad colectora de luz, o puede recibir, de forma alternativa, la luz de alguna de las unidades de telescopio de forma individual, permitiendo un uso más flexible del tiempo de observación. ESPRESSO fue específicamente desarrollado para aprovechar esta infraestructura [3].

La búsqueda de planetas similares a la Tierra es uno de los objetivos de ESPRESSO.
La imagen del autor nos muestra el sistema estelar TRAPPIST-1.
Crédito: ESO.


La luz de las cuatro unidades de telescopio ya se colecta de forma rutinaria en el Interferómetro del VLT para el estudio de detalles muy finos en objetos relativamente brillantes.

El científico del proyecto, Paolo Molaro, afirma: "Este impresionante hito es la culminación del trabajo de muchos años por parte de un gran equipo de ingenieros y científicos. Es maravilloso ver cómo ESPRESSO trabaja con las cuatro unidades de telescopio y estoy deseando ver los emocionantes resultados científicos que están por venir".

Enviar la luz combinada a un único instrumento dará acceso a los astrónomos a una información nunca antes disponible. Esta nueva instalación marca un antes y un después en la astronomía hecha con espectrógrafos de alta resolución. Hace uso de nuevos conceptos, tales como calibración de longitud de onda con la ayuda de un peine de frecuencia láser, proporcionando una precisión y una repetibilidad sin precedentes, a lo que ahora se suma el poder unir la capacidad colectora de luz de las cuatro unidades de telescopio [4].

"Ahora, con ESPRESSO trabajando con las cuatro unidades de telescopio, tenemos una muestra anticipada de lo que podrá ofrecernos, en pocos años, la próxima generación de telescopios como el Extremely Large Telescope de ESO", concluye el Director General de ESO, Xavier Barcons.

Notas
[1] ESPRESSO, la próxima generación de buscadores de planetas, hizo sus primeras observaciones el 6 de diciembre de 2017 utilizando sólo una de las cuatro unidades de telescopio (UTs) de 8,2 metros de diámetro que conforman el VLT.

[2] La palabra "incoherente" significa que la luz de los cuatro telescopios simplemente se suma sin tener en cuenta la información de fase, algo que sí se hace en el Interferómetro del VLT.

[3] La nueva combinación de luz incoherente tiene una capacidad colectora de luz comparable a la de un telescopio de 16 metros de apertura. Sin embargo, la resolución angular sigue siendo la de un único telescopio de 8 metros, a diferencia de lo que ocurre en el interferómetro de VLT, donde la resolución es mayor a la de un telescopio (virtual) con una apertura efectiva igual a la máxima separación entre los telescopios que lo conforman.

[4] El "AstroComb" (o “astropeine”), un sistema de calibración de longitud de onda basado en un peine de frecuencias láser, fue desarrollado y fabricado por Menlo Systems GmbH en Martinsried, Alemania.

Información adicional.
ESO es la principal organización astronómica intergubernamental de Europa y el observatorio astronómico más productivo del mundo. Cuenta con el respaldo de dieciséis países: Alemania, Austria, Bélgica, Brasil, Dinamarca, España, Finlandia, Francia, Italia, Países Bajos, Polonia, Portugal, el Reino Unido, República Checa, Suecia y Suiza, junto con el país anfitrión, Chile. ESO desarrolla un ambicioso programa centrado en el diseño, construcción y operación de poderosas instalaciones de observación terrestres que permiten a los astrónomos hacer importantes descubrimientos científicos. ESO también desarrolla un importante papel al promover y organizar la cooperación en investigación astronómica. ESO opera en Chile tres instalaciones de observación únicas en el mundo: La Silla, Paranal y Chajnantor. En Paranal, ESO opera el Very Large Telescope, el observatorio óptico más avanzado del mundo, y dos telescopios de rastreo. VISTA (siglas en inglés de Telescopio de Rastreo Óptico e Infrarrojo para Astronomía) trabaja en el infrarrojo y es el telescopio de rastreo más grande del mundo, y el VST (VLT Survey Telescope, Telescopio de Rastreo del VLT) es el telescopio más grande diseñado exclusivamente para rastrear el cielo en luz visible. ESO es el socio europeo de un revolucionario telescopio, ALMA, actualmente el mayor proyecto astronómico en funcionamiento del mundo. Además, cerca de Paranal, en Cerro Armazones, ESO está construyendo el ELT (Extremely Large Telescope), el telescopio óptico y de infrarrojo cercano de 39 metros que llegará a ser “el ojo más grande del mundo para mirar el cielo”.


Contactos.
José Miguel Mas Hesse
Centro de Astrobiología (INTA-CSIC)
Madrid, España
Tlf.: (+34) 91 813 11 96
Correo electrónico: mm@cab.inta-csic.es

Francesco Pepe
University of Geneva
Geneva, Switzerland
Correo electrónico: Francesco.Pepe@unige.ch

Stefano Cristiani
INAF–Osservatorio Astronomico di Trieste
Trieste, Italy
Correo electrónico: cristiani@oats.inaf.it

Nuno Santos
Instituto de Astrofísica e Ciências do Espaço and Universidade do Porto
Porto, Portugal
Correo electrónico: Nuno.Santos@astro.up.pt

Rafael Rebolo
Instituto de Astrofísica de Canarias
Tenerife, Spain
Correo electrónico: rrl@iac.es

Gaspare Lo Curto
ESO
Garching, Germany
Correo electrónico: glocurto@eso.org

Antonio Manescau
ESO
Garching, Germany
Correo electrónico: amanesca@eso.org

Florian Kerber
ESO
Garching bei München, Germany
Correo electrónico: fkerber@eso.org

Richard Hook
ESO Public Information Officer
Garching bei München, Germany
Tlf.: +49 89 3200 6655
Móvil: +49 151 1537 3591
Correo electrónico: rhook@eso.org

Connect with ESO on social media.


Lo más visto del mes