ALMA revela impacto volcánico en atmósfera de Io.

El Atacama Large Millimeter/submillimeter Array (ALMA) obtuvo nuevas imágenes de radio que muestran por primera vez el efecto directo de la actividad volcánica en la atmósfera de Io, una de las lunas de Júpiter.

Imagen compuesta de Io, una de las lunas de Júpiter, obtenida en frecuencias de radio con ALMA y de luz óptica con las sondas Voyager 1 y Galileo. Las imágenes de ALMA mostraron por primera vez unas plumas de dióxido de azufre (en amarillo) saliendo de los volcanes. En el fondo se ve Júpiter (imagen de Cassini). Créditos: ALMA (ESO/NAOJ/NRAO), I. de Pater et al.; NRAO/AUI NSF, S. Dagnello; NASA/JPL/Space Science Institute

Io es la luna con mayor actividad volcánica de nuestro Sistema Solar: tiene más de 400 volcanes activos que expulsan gases de azufre. Estos gases la tiñen amarillo, blanco, naranja y rojo cuando se congelan en su superficie.

A pesar de ser extremadamente fina (cerca de 1.000 millones de veces más fina que la atmósfera de la Tierra), la atmósfera de Io puede proporcionarnos información sobre la actividad volcánica de este peculiar satélite, así como su interior y todo lo que sucede debajo de su colorida corteza.

En estudios anteriores se había descubierto que la atmósfera de Io está compuesta principalmente de gas de dióxido de azufre generado por su actividad volcánica. “Sin embargo, no se sabe qué procesos impulsan las dinámicas de la atmósfera de Io”, señala Imke de Pater, de la Universidad de California en Berkeley. “¿Es la actividad volcánica o la sublimación del gas [su transición de estado sólido a gaseoso] a partir de la superficie de hielo, cuando Io se expone a la luz del sol?”, interroga.

Con el fin de distinguir los distintos procesos que dan origen a la atmósfera de Io, un equipo de astrónomos usó ALMA para obtener imágenes del satélite durante su paso por dentro y por fuera de la sombra de Júpiter (fenómeno conocido como eclipse).

“Al pasar por la sombra de Júpiter y dejar de recibir luz solar directa, Io se vuelve extremadamente fría y el gas de dióxido de azufre se condensa sobre su superficie. Durante ese período, lo único que vemos es dióxido de azufre de origen volcánico. De esa forma, podemos ver exactamente qué proporción de la atmósfera se ve afectada por la actividad volcánica”, explica Statia Luszcz-Cook, de la Universidad de Columbia (Nueva York).

Gracias a la gran sensibilidad y capacidad de resolución de ALMA, por primera vez los astrónomos pudieron observar con mucha claridad las plumas de dióxido de azufre (SO2) y monóxido de azufre (SO) emanadas de los volcanes. A partir de las imágenes obtenidas, los científicos calcularon que los volcanes producen directamente cerca del 30-50 % de la atmósfera de Io.

En las imágenes de ALMA también se observa un tercer gas proveniente de los volcanes: cloruro de potasio (KCI). “Vemos KCI en zonas volcánicas donde no se observa SO2 ni SO. Esta es una prueba fehaciente de que el magma es diferente en los distintos volcanes”, comenta Statia.

Imagen de radio de Júpiter captada con ALMA. Las bandas brillantes indican altas temperaturas y las bandas oscuras bajas temperaturas. Las bandas oscuras corresponden a las zonas de Júpiter, que a menudo son blancas en longitudes de onda visibles. Las bandas brillantes corresponden a los cinturones marrones del planeta. Esta imagen contiene más de 10 horas de datos, por lo que los detalles finos están manchados por la rotación del planeta. Crédito: ALMA (ESO/NAOJ/NRAO), I. de Pater et al .; NRAO/AUI NSF, S. Dagnello.

Io presenta actividad volcánica debido a un proceso conocido como calentamiento gravitacional. Io describe alrededor de Júpiter una órbita que no es del todo circular y, al igual que nuestra Luna con respecto a la Tierra, siempre tiene el mismo lado mirando a Júpiter. La atracción gravitacional de Europa y Ganímedes, otras dos lunas de Júpiter, genera muchísima fricción interna y calor, y de ese fenómeno nacen volcanes como Loki Patera, que se extiende por más de 200 kilómetros. “Al estudiar la atmósfera y la actividad volcánica de Io se aprende no solo sobre sus volcanes, sino también sobre su interior y los procesos de calentamiento gravitacional”, explica Statia.

La temperatura de la atmósfera inferior de Io, en tanto, sigue siendo una incógnita. Los astrónomos esperan poder medirla en investigaciones futuras. “Para medir la temperatura de la atmósfera de Io necesitamos realizar observaciones con mayor resolución, y para eso tenemos que observarla durante más tiempo, algo que solo podremos hacer cuando Io se encuentre expuesta a la luz solar, puesto que no pasa mucho tiempo en el eclipse”, señala Imke. “Durante esas observaciones, Io giraría en decenas de grados. Tendríamos que usar software para corregir las imágenes y que no se vean borrosas, como hicimos con las imágenes de radio de Júpiter obtenidas con ALMA y el Very Large Array (VLA)”.

Información adicional.

Imke de Pater y Statia Luszcz-Cook trabajaron con Patricio Rojo, de la Universidad de Chile, Erin Redwing, de la Universidad de California en Berkeley, Katherine de Kleer, del Instituto de Tecnología de California (Caltech), y Arielle Moullet, de SOFIA/USRA (California).

El artículo emanado de esta investigación, titulado “ALMA Observations of Io Going into and Coming out of Eclipse” (‘Observaciones de Io entrando y saliendo del eclipse realizadas con ALMA’) se publicará en la revista The Planetary Science Journal. Manuscrito: https://arxiv.org/abs/2009.07729

El Atacama Large Millimeter/submillimeter Array (ALMA), una instalación astronómica internacional, es una asociación entre el Observatorio Europeo Austral (ESO), la Fundación Nacional de Ciencia de EE. UU. (NSF) y los Institutos Nacionales de Ciencias Naturales de Japón (NINS) en cooperación con la República de Chile. ALMA es financiado por ESO en representación de sus estados miembros, por NSF en cooperación con el Consejo Nacional de Investigaciones de Canadá (NRC) y el Ministerio de Ciencia y Tecnología de Taiwán (MOST), y por NINS en cooperación con la Academia Sinica (AS) de Taiwán y el Instituto de Ciencias Astronómicas y Espaciales de Corea del Sur (KASI).

Diecinueve antenas en el llano de Chajnantor. Esta imagen de las antenas de ALMA sobre el llano de Chajnantor, a 5000 metros de altura en los Andes chilenos, fue tomada pocos días antes del comienzo de la Ciencia Inicial con ALMA. En el llano se pueden ver diecinueve antenas. Crédito: ALMA (ESO/NAOJ/NRAO)/W. Garnier (ALMA)

La construcción y las operaciones de ALMA son conducidas por ESO en nombre de sus estados miembros; por el Observatorio Radioastronómico Nacional (NRAO), gestionado por Associated Universities, Inc. (AUI), en representación de Norteamérica; y por el Observatorio Astronómico Nacional de Japón (NAOJ) en nombre de Asia del Este. El Joint ALMA Observatory (JAO) tiene a su cargo la dirección general y la gestión de la construcción, así como la puesta en marcha y las operaciones de ALMA.

El comunicado de prensa original fue publicado por el Observatorio Radioastronómico Nacional de los Estados Unidos (NRAO), socio de ALMA en nombre de América del Norte.

Enlaces de interés:

CONTACTOS

Iris Nijman

Directora de noticias e información pública

Observatorio Radioastronómico Nacional de Estados Unidos (NRAO), Charlottesville VA - EE.UU.

Teléfono móvil: +1 (434) 249 3423

Correo electrónico: inijman@nrao.edu


Valeria Foncea

Directora de Comunicaciones y Educación

Observatorio ALMA, Santiago, Chile

Teléfono fijo: +56 2 2467 6258

Teléfono móvil: +56 9 7587 1963

Correo electrónico: valeria.foncea@alma.cl


Masaaki Hiramatsu

Encargado de Educación y Extensión, NAOJ Chile

Observatorio de Tokio, Japón

Teléfono fijo: +81 422 34 3630

Correo electrónico: hiramatsu.masaaki@nao.ac.jp


Bárbara Ferreira

Oficial de Prensa ESO

Garching, Munich, Alemania

Teléfono fijo: +49 89 3200 6670

Correo electrónico: pio@eso.org


• Publicado en ALMA el 21 de octubre del 2020, enlace publicación.

Lo más visto del mes