La luz

¿Qué es la luz?

La luz (del latín lux, lucis) es la parte de la radiación electromagnética que puede ser percibida por el ojo humano.​ En física, el término luz se considera como parte del campo de las radiaciones conocido como espectro electromagnético, mientras que la expresión luz visible señala específicamente la radiación en el espectro visible. La luz, como todas las radiaciones electromagnéticas, está formada por partículas elementales desprovistas de masa denominadas fotones, ​cuyas propiedades de acuerdo con la dualidad onda-partícula explican las características de su comportamiento físico tratándose de una onda esférica.​

La óptica es la rama de la física que estudia el comportamiento de la luz, sus características y sus diferentes manifestaciones.

Distintos tipos de luz


Velocidad de la luz

La velocidad de la luz en el vacío es una constante universal con el valor de 299 792 458 m/s ​aunque suele aproximarse a 3·108 m/s. Se simboliza con la letra c, proveniente del latín celéritās (en español, celeridad o rapidez).

El valor de la velocidad de la luz en el vacío fue incluido oficialmente en el Sistema Internacional de Unidades como constante el 21 de octubre de 1983​ pasando así el metro a ser una unidad derivada de esta constante. También se emplea en la definición del año luz, unidad de longitud equivalente a 9,46·10^15 m, ya que la velocidad de la luz también se puede expresar como 9,46·10^15 m/año.

La rapidez a través de un medio que no sea el "vacío" depende de su permitividad eléctrica, de su permeabilidad magnética, y otras características electromagnéticas. En medios materiales, esta velocidad es inferior a c y queda codificada en el índice de refracción. En modificaciones del vacío más sutiles, como espacios curvos, efecto Casimir, poblaciones térmicas o presencia de campos externos, la velocidad de la luz depende de la densidad de energía de ese vacío.

Refracción de la luz

La refracción es la variación brusca de dirección que sufre la luz al cambiar de medio. Este fenómeno se debe a que la luz se propaga a diferentes velocidades según el medio por el que viaja. El cambio de dirección es mayor cuanto mayor es el cambio de velocidad, ya que la luz recorre mayor distancia en su desplazamiento por el medio en que va más rápido. La ley de Snell relaciona el cambio de ángulo con el cambio de velocidad por medio de los índices de refracción de los medios.

Propagación y difracción

Una de las propiedades de la luz más evidentes a simple vista es que se propaga en línea recta. Lo podemos ver, por ejemplo, en la propagación de un rayo de luz a través de ambientes polvorientos o de atmósferas saturadas. La óptica geométrica parte de esta premisa para predecir la posición de la luz, en un determinado momento, a lo largo de su transmisión.

De la propagación de la luz y su encuentro con objetos surgen las sombras. Si interponemos un cuerpo opaco en el camino de la luz y a continuación una pantalla, obtendremos sobre ella la sombra del cuerpo. Si el origen de la luz o foco se encuentra lejos del cuerpo, de tal forma que, relativamente, sea más pequeño que el cuerpo, se producirá una sombra definida. Si se acerca el foco al cuerpo surgirá una sombra en la que se distinguen una región más clara denominada penumbra y otra más oscura denominada umbra.

Sin embargo, la luz no siempre se propaga en línea recta. Cuando la luz atraviesa un obstáculo puntiagudo o una abertura estrecha, el rayo se curva ligeramente. Este fenómeno, denominado difracción, es el responsable de que al mirar a través de un agujero muy pequeño todo se vea distorsionado o de que los telescopios y microscopios tengan un número de aumentos máximo limitado.

Existen otros fenómenos como la reflexión, ondas de luz reflejadas dependiendo del material sobre el que incidan; dispersión, la luz al atravesar sustancias materiales se dispersa y se frena, como ocurre cuando entra en la atmósfera terrestre o cuando incide sobre un vaso con alguna clase de líquido. Otros fenómenos de la luz son la polarización y los efectos químicos, fotosíntesis.

Naturaleza de la luz

La luz presenta una naturaleza compleja: depende de cómo la observemos se manifestará como una onda o como una partícula. Estos dos estados no se excluyen, sino que son complementarios (dualidad onda corpúsculo). Sin embargo, para obtener un estudio claro y conciso de su naturaleza, podemos clasificar los distintos fenómenos en los que participa según su interpretación teórica como la Teoría ondulatoria o la Teoría corpuscular.

Efecto relativista

En 1905, Albert Einstein dio una explicación satisfactoria con su teoría de la relatividad especial, en la que, en su segundo postulado propone que la velocidad de la luz es isótropa, es decir, independiente del movimiento relativo del observador o de la fuente.

Medidas de velocidad de la luz

La historia de la medición de la velocidad de la luz comienza en el siglo XVII en los albores de la revolución científica. Un estudio histórico relativo a las mediciones de la velocidad de la luz señala una docena de métodos diferentes para determinar el valor de "c".​ La mayor parte de los primeros experimentos para intentar medir la velocidad de la luz fracasaron debido a su alto valor, y tan solo se pudieron obtener medidas indirectas a partir de fenómenos astronómicos. En el siglo XIX se pudieron realizar los primeros experimentos directos de medición de la velocidad de la luz confirmando su naturaleza electromagnética y las ecuaciones de Maxwell.

Primeros intentos

En 1629 Isaac Beeckman, un amigo de René Descartes, propuso un experimento en el que se pudiese observar el fogonazo de un cañón reflejándose en un espejo ubicado a una milla (1,6 km) del primero. En 1638, Galileo propuso un experimento para medir la velocidad de la luz, intentando detectar un posible lapso al destapar una linterna cuando es observada a cierta distancia. René Descartes criticó esta tentativa como algo superfluo, dado que la observación de eclipses, un procedimiento con un potencial mucho mayor para detectar una rapidez finita de la luz, había dado un resultado negativo. La Accademia del Cimento de Florencia puso en práctica en 1667 el experimento que había ideado Galileo, con las linternas separadas una milla entre sí, sin observarse ningún retraso. Robert Hooke explicó los resultados negativos tal como Galileo había hecho: precisando que tales observaciones no establecerían la velocidad infinita de la luz, sino tan solo que dicha velocidad debía ser muy grande.

Primeras mediciones

En 1676 Ole Rømer realizó la primera estimación cuantitativa de la velocidad de la luz estudiando el movimiento del satélite Ío de Júpiter con un telescopio. Es posible medir el tiempo de la revolución de Ío debido a sus movimientos de entrada y salida en la sombra arrojada por Júpiter en intervalos regulares. Rømer observó que Ío gira alrededor de Júpiter cada 42,5 h cuando la Tierra esta más cerca de Júpiter. También observó que, cuando la Tierra y Júpiter se mueven separándose, la salida de Ío fuera de la proyección de la sombra comenzaba progresivamente más tarde de lo predicho. Las observaciones detalladas mostraban que estas señales de salida necesitaban más tiempo en llegar a la Tierra, ya que la Tierra y Júpiter se separaban cada vez más. De este modo el tiempo extra utilizado por la luz para llegar a la Tierra podía utilizarse para deducir la rapidez de esta. Seis meses después, las entradas de Ío en la proyección de la sombra se adelantaban, ya que la Tierra y Júpiter se acercaban uno a otro. Con base a estas observaciones, Rømer estimó que la luz tardaría 22 min en cruzar el diámetro de la órbita de la Tierra (es decir, el doble de la unidad astronómica); las estimaciones modernas se acercan más a la cifra de 16 min y 40 s.

Alrededor de la misma época, la unidad astronómica (radio de la órbita de la Tierra alrededor del Sol) se estimaba en cerca de 140 millones de km. Este dato y la estimación del tiempo de Rømer fueron combinados por Christian Huygens, quien consideró que la velocidad de la luz era cercana a 1000 diámetros de la Tierra por minuto, es decir, unos 220 000 km/s, muy por debajo del valor actualmente aceptado, pero mucho más rápido que cualquier otro fenómeno físico entonces conocido.

Isaac Newton también aceptó el concepto de velocidad finita. En su libro Opticks expone el valor más preciso de 16 minutos para que la luz recorra el diámetro de la órbita terrestre, valor que al parecer dedujo por sí mismo (se desconoce si fue a partir de los datos de Rømer o de alguna otra manera).

El mismo efecto fue subsecuentemente observado por Rømer en un punto en rotación con la superficie de Júpiter. Observaciones posteriores también mostraron el mismo efecto con las otras tres lunas Galileanas, en las que era más difícil de observar al estar estos satélites más alejados de Júpiter y proyectar sombras menores sobre el planeta.

Aunque por medio de estas observaciones la velocidad finita de la luz no fue establecida para la satisfacción de todos (notablemente Jean-Dominique Cassini), después de las observaciones de James Bradley (1728), la hipótesis de velocidad infinita se consideró totalmente desacreditada. Bradley dedujo que la luz de las estrellas que llega sobre la Tierra parecería provenir en un ángulo leve, que podría ser calculado al comparar la velocidad de la Tierra en su órbita con la velocidad de la luz. Se observó esta llamada aberración de la luz, estimándose en 1/200 de un grado.

Bradley calculó la velocidad de la luz en alrededor de 298 000 km/s. Esta aproximación es solamente un poco menor que el valor actualmente aceptado. El efecto de aberración fue estudiado extensivamente en los siglos posteriores, notablemente por Friedrich Georg Wilhelm Struve y Magnus Nyren.

Un puente de Einstein-Rosen muy casero

Medidas directas

La segunda medida acertada de la velocidad de la luz, primera mediante un aparato terrestre, fue realizada por Hippolyte Fizeau en 1849. El experimento de Fizeau era conceptualmente similar a aquellos propuestos por Beeckman y Galileo. Un rayo de luz se dirigía a un espejo a cientos de metros de distancia. En su trayecto desde la fuente hacia el espejo, el rayo pasaba a través de un engranaje rotatorio. A cierto nivel de rotación, el rayo pasaría a través de un orificio en su camino de salida y en otro en su camino de regreso. Pero en niveles ligeramente menores, el rayo se proyectaría en uno de los dientes y no pasaría a través de la rueda. Conociendo la distancia hasta el espejo, el número de dientes del engranaje y el índice de rotación, se podría calcular la velocidad de la luz. Fizeau reportó la velocidad de la luz como 313 000 km/s. El método de Fizeau fue refinado más tarde por Marie Alfred Cornu (1872) y Joseph Perrotin (1900), pero fue el físico francés Léon Foucault quien más profundizó en la mejora del método de Fizeau al reemplazar el engranaje por un espejo rotatorio. El valor estimado por Foucault, publicado en 1862, fue de 298 000 km/s. El método de Foucault también fue usado por Simon Newcomb y Albert Michelson, quien comenzó su larga carrera replicando y mejorando este método.

En 1926, Michelson utilizó espejos rotatorios para medir el tiempo que tardaba la luz en hacer un viaje de ida y vuelta entre la montaña Wilson y la montaña San Antonio en California. De las mediciones cada vez más exactas, resultó una velocidad de 299 796 km/s.

Viajar a la velocidad de la luz

Hasta donde la ciencia, las matemáticas y la física saben, es imposible alcanzar la velocidad de luz. Para ello, tenemos que entender algo relativamente sencillo, y nunca mejor dicho: la conocida fórmula E=mc2. Teoría de la relatividad de Einstein.

En esta fórmula, que es la equivalencia entre masa y energía, encontramos tres componentes principales, que son:

E: energía.
m: la masa de un objeto.
c: la velocidad de la luz, que en la fórmula está elevada al cuadrado.

La velocidad de la luz en el vacío es de 299.792,458 kilómetros por segundo, aunque siempre suele decirse que es de 300.000 kilómetros por segundo para aproximar y que es lo mismo que decir 1.080.000.000 kilómetros por hora. Sorprendente, simple y llanamente.

¿Y qué nos dice esta fórmula? Que la energía se puede calcular multiplicando la masa por la velocidad de la luz al cuadrado, es decir, que cuando hay masa, hay energía. Incluso un objeto relativamente pequeño en reposo, es decir, que no se mueve, tiene una generosa cantidad de energía, si pudiéramos transmutar la masa de una persona de 70 kilos en energía conseguiríamos la misma energía que 210.000 bombas nucleares de Hiroshima.

Ahora bien, la fórmula que hemos usado hasta el momento contempla la energía en reposo, es decir, no está completa. Para completarla y descubrir por qué no podemos viajar a la velocidad de la luz tenemos que meter un ingrediente más: la energía asociada al movimiento, de forma que la fórmula completa queda como E2=(mc2)2+(pc)2, donde:

E: energía.
m: masa
c: velocidad de la luz.
p: momento del objeto, que se obtiene de multiplicar la masa del objeto por su velocidad (p=mv).

Dicho de otra forma, la energía total de un objeto es la suma de su energía en reposo (mc2)2 y de su energía asociada al movimiento (pc) o (mvc)Ya sabemos que energía es equivalente a masa, por lo que un aumento en la velocidad de movimiento aumentará el valor de "p", ergo de la energía en movimiento, ergo de la masa. De esa forma, conforme aceleramos más masa tenemos y más energía necesitamos para seguir acelerando. Hawking, en su libro 'Brevísima historia del tiempo", lo explica de la siguiente forma:

"Al diez por ciento de la velocidad de la luz, la masa de un objeto sólo es un 0,5 por ciento mayor que en reposo, mientas que al noventa por ciento de la velocidad de la luz sería más del doble de la masa normal en reposo".

Dicho de otra forma, la masa tiende a infinito y para poder alcanzar la velocidad de la luz se tendría que aplicar energía infinita, algo que, simple y llanamente, no es posible. Citando de nuevo a Hawking, "cualquier objeto normal está condenado a moverse para siempre con velocidades inferiores a la de la luz".

¿Y por qué la luz se mueve a la velocidad de la luz? ¿No le afecta este fenómeno? Porque la luz está compuesta de fotones, que son una partícula muy particular, valga la redundancia. No solo no tienen masa, sino que tampoco necesitan acelerar ya que están a la máxima velocidad desde el momento en que son creados, es decir, que desde su nacimiento están a 299.792,458 kilómetros por segundo.

Según Hawking, "solo la luz, u otras ondas que no tengan masa intrínseca, puede moverse a la velocidad de la luz", así que, desgraciadamente, no va a ser posible ir de Tatooine a Coruscant en un par de segundos, más aún teniendo en cuenta que las distancias en el espacio son absurdamente altas. Tanto que la luz, viajando a su enormísima velocidad, tarda en llegar de la superficie del Sol a la de Plutón 5,28 horas.

Alternativas al viaje estelar

La nave Entreprise del universo Star Treck

Agujeros de gusano

En física, un agujero de gusano, también conocido como puente de Einstein-Rosen, es una hipotética característica topológica de un espacio-tiempo, descrita en las ecuaciones de la relatividad general, que esencialmente consiste en un atajo a través del espacio y el tiempo. Un agujero de gusano tiene por lo menos dos extremos conectados a una única garganta, a través de la cual podría desplazarse la materia. Hasta la fecha no se ha hallado ninguna evidencia de que el espacio-tiempo conocido contenga estructuras de este tipo, por lo que en la actualidad es solo una posibilidad teórica en la ciencia.

El primer científico en advertir de la existencia de agujeros de gusano fue el austríaco Ludwig Flamm, en 1916. En este sentido, la hipótesis del agujero de gusano es una actualización de la decimonónica teoría de una cuarta dimensión espacial que suponía —por ejemplo—, dado un cuerpo toroidal en el que se podían encontrar las tres dimensiones espaciales comúnmente perceptibles, una cuarta dimensión espacial que abreviara las distancias y, de esa manera, los tiempos de viaje. Esta noción inicial fue planteada de manera más científica en 1921 por el matemático alemán Hermann Weyl, sin embargo, no usó el término "agujero de gusano" (habló de "tubos unidimensionales"), cuando este relacionó sus análisis de la masa en términos de la energía de un campo electromagnético​ con la teoría de la relatividad de Albert Einstein publicada en 1916.

En la actualidad, la teoría de cuerdas admite la existencia de más de tres dimensiones espaciales (ver hiperespacio), pero esas dimensiones extra estarían compactadas a escalas subatómicas (según la teoría de Kaluza-Klein), por lo que parece muy difícil (si no imposible) aprovecharlas para emprender viajes en el espacio y el tiempo.

Hiperespacio

El hiperespacio es una forma de espacio que tiene cuatro o más dimensiones. El término aparece tanto en geometría, como en la descripción informal de ciertas teorías físicas.

La noción de hiperespacio ha sido y es utilizada para especulaciones sobre desplazamientos superlumínicos; Stephen Hawking ejemplifica de un modo sencillo cómo se puede suponer a un hiperespacio de un modo topológico: supóngase que el universo de 3D espaciales fuera como un toro (la figura es usada por Hawking solo con fines ilustrativos y se refiere a un toroide, cierta forma tridimensional), un viaje a velocidad c (como la velocidad de la luz) siguiendo el espacio (y el tiempo correlativo al mismo) dentro del toro para recorrerlo en un bucle o circuito sería más prolongado que si se tomara como atajo un hiperespacio, en la ilustración que da Hawking tal hiperespacio es representado como un trayecto (por ejemplo una recta) que sale del toro y conecta otro punto del mismo toro con menos espacio recorrido.

En tal caso no se habría superado realmente la velocidad c sino que se habría hecho un atajo entre puntos del espacio-tiempo usualmente muy distantes. Este ejemplo de hiperespacio es muy semejante a lo que se supone ocurre en un (actualmente hipotético) agujero de gusano.

Ciencia ficción

El hiperespacio es un concepto de la ciencia ficción relacionado con dimensiones superiores y un método superlumínico de viaje interestelar. Suele describirse como una "subregión" alternativa del espacio que coexiste con nuestro propio universo. En gran parte de la ciencia ficción, el hiperespacio se describe como un lugar físico al que se puede entrar y salir utilizando un campo de energía o fenómenos similares generados por un dispositivo de a bordo a menudo conocido como "hiperimpulsor". La función superlumínica del concepto se ve así facilitada por el hecho de que, una vez en el hiperespacio, las leyes de la relatividad general y especial no se comportan necesariamente de la misma manera en comparación con el espacio tiempo normal, lo que permite a los viajeros a través del hiperespacio recorrer distancias astronómicas en periodos de tiempo mucho más cortos que los que tardaría un objeto análogo viajando a la velocidad de la luz en recorrer dicha distancia en el espacio tiempo normal. Esto permite un viaje aparentemente más rápido que la luz, lo que es necesario para tener un viaje práctico a escala humana a través del espacio exterior. "A través del hiperespacio, esa región inimaginable que no era ni espacio ni tiempo, ni materia ni energía, ni algo ni nada, se podría atravesar la longitud de la galaxia en el intervalo entre dos instantes de tiempo vecinos"

Las distancias astronómicas y la imposibilidad de viajar más rápido que la luz suponen un reto para la mayoría de los autores de ciencia ficción. Pueden tratarse de varias maneras: aceptarlas como tales (hibernación, barcos lentos, naves de generación, dilatación del tiempo -la tripulación percibirá la distancia como mucho más corta y, por tanto, el tiempo de vuelo será corto desde su perspectiva-), encontrar una forma de moverse más rápido que la luz (motor warp), "plegar" el espacio para lograr una traslación instantánea (por ejemplo, el efecto Holtzman del universo Dune o la curvatura en Star Trek), acceder a algún tipo de atajo (agujeros de gusano), utilizar una curva temporal cerrada o eludir el problema en un espacio alternativo: el hiperespacio. Los relatos que utilizan este dispositivo argumental suelen ofrecer descripciones detalladas de los mecanismos del viaje por el hiperespacio, incorporando a veces algo de física real, como la relatividad o la teoría de cuerdas.

En general, como toda forma de viajar a velocidades mayores que la luz, mantiene el inconveniente según el cual superar esta barrera implicaría también la posibilidad de viajar en el tiempo y, consecuentemente, violar el principio de causalidad, dando lugar a paradojas que parecen contradecir tal posibilidad.

El motor WARP o motor de curvatura

El desplazamiento por curvatura, empuje por curvatura, o simplemente curvatura (del inglés warp), también llamado impulso de deformación o impulso de distorsión es una forma actualmente ficticia de propulsión superlumínica nacida en el universo creado por la ficción de Star Trek. Este empuje permitiría propulsar una nave espacial a una velocidad equivalente a varios múltiplos de la velocidad de la luz, mientras se evitan los problemas asociados con la dilatación relativista del tiempo. Este tipo de propulsión se basa en curvar o distorsionar el espacio-tiempo, de tal manera que permita a la nave acercarse al punto de destino.

El empuje por curvatura no permite, ni es capaz de generar, un viaje instantáneo entre dos puntos a una velocidad infinita, tal y como ha sido sugerido en algunas obras de ciencia ficción, en las que se emplean tecnologías imaginarias como el hipermotor o el motor de salto, pero si es capaz de hacer una gran diferencia entre las velocidades normales.

Una diferencia entre la propulsión a curvatura y el uso del hiperespacio es que en la propulsión a curvatura, la nave no entra en un universo (o dimensión) diferente: simplemente se crea alrededor de la nave una pequeña burbuja (burbuja de curvatura) en el espacio-tiempo, y se generan distorsiones del espacio-tiempo para que la burbuja se aleje del punto de origen y se aproxime a su destino. Las distorsiones generadas serían de expansión detrás de la burbuja (alejándola del origen) y de contracción delante de la burbuja (acercándola al destino). La burbuja de curvatura se situaría en una de las distorsiones del espacio-tiempo, sobre la cual cabalgaría de manera análoga a como los surfistas lo hacen sobre una ola de mar.

El motor de curvatura (warp drive) es famoso por ser el método de propulsión empleado en el universo ficticio de Star Trek

Entre los diferentes físicos teóricos que han analizado esta propulsión, y hace poco se hicieron avances con el primer diseño teórico del sistema WARP. El más conocido de estos diseños es el motor de Alcubierre (The warp drive: hyper-fast travel within general relativity, acerca del impulso de deformación de Alcubierre, publicado en 1994) y que asume uno de los términos empleados en la jerga de Star Trek: el factor de curvatura como medida de la curvatura (deformación) del espacio-tiempo y que, aunque permite viajar a una gran velocidad, no permite viajar más rápido que la luz (según las reglas relativistas es imposible). Si el espacio-tiempo se curva de manera apropiada, estrictamente hablando, el objeto o la nave no se mueve a velocidades lumínicas, de hecho se encuentra estacionaria en el espacio interior de la burbuja de curvatura. Esta situación estacionaria de la nave, dentro de la burbuja, haría que la tripulación no se viera afectada por grandes aceleraciones/desaceleraciones ni existiría un transcurrir del tiempo diferente, es decir, no sufriría el efecto de la dilatación temporal, como en el caso de desplazarse a velocidades próximas a las de la luz en el espacio-tiempo, es como si estuviera en un universo completamente diferente, por lo que viajar así daría interesantes resultados. La nave, al activarse su propulsión por curvatura, para un observador exterior parecería que se mueve más rápido que la luz y desaparecería de su campo de visión en un breve lapso al expandirse el espacio-tiempo de la nave con respecto a ese observador.

Enlace de interés:

Lo más visto del mes