Un nuevo giro en el capítulo de la materia oscura.

El cúmulo de Perseo.
Imagen del cúmulo de Perseo compuesto por longitudes de onda en rayos X, luz visible y radio.

Una interpretación innovadora de los datos de rayos X de un cúmulo de galaxias podría ayudar a los científicos a cumplir una misión en la que han estado durante décadas: determinar la naturaleza de la materia oscura.

La imagen que se muestra aquí contiene datos de rayos X de Chandra (azul) del cúmulo de galaxias Perseus, que se ha combinado con datos ópticos del Telescopio Espacial Hubble (rosa) y emisiones de radio de Very Large Array (rojo). En 2014, los investigadores detectaron un pico de intensidad inusual, conocido como línea de emisión, a una longitud de onda específica de rayos X (3,5 keV "leído kilo electrón voltio") en el gas caliente dentro de la región central del cúmulo Perseus. También informaron la presencia de esta misma línea de emisión en un estudio de otros 73 cúmulos de galaxias.

Chandra.
En los meses y años posteriores, los astrónomos han intentado confirmar la existencia de esta línea de 3,5 keV. Están ansiosos por hacerlo porque puede darnos pistas importantes sobre la naturaleza de la materia oscura. Sin embargo, se ha debatido en la comunidad astronómica exactamente lo que las observaciones originales y de seguimiento han revelado.

El hallazgo implica una nueva explicación para un conjunto de resultados realizados con el Observatorio de rayos X Chandra de la NASA, XMM-Newton y Hitomi de la ESA, un telescopio de rayos X dirigido por japoneses. Si se confirma con observaciones futuras, esto puede representar un importante avance en la comprensión de la naturaleza de la sustancia misteriosa e invisible que constituye aproximadamente el 85% de la materia en el universo.

"Esperamos que este resultado sea muy importante o un fracaso total", dijo Joseph Conlon, de la Universidad de Oxford, quien dirigió el nuevo estudio. "No creo que haya un punto medio cuando buscas respuestas a una de las preguntas más importantes de la ciencia".

La historia de este trabajo comenzó en 2014 cuando un equipo de astrónomos dirigido por Esra Bulbul (Centro Harvard-Smithsoniano de Astrofísica en Cambridge, Massachusetts) encontró un pico de intensidad a una energía muy específica en Chandra y observaciones de XMM-Newton del gas en el cúmulo de galaxias de Perseo.

Este pico, o línea de emisión, tiene una energía de 3,5 kiloelectrones voltios (keV). La intensidad de la línea de emisión de 3,5 keV es muy difícil, si no imposible, de explicar en términos de características previamente observadas o predichas de objetos astronómicos, y por lo tanto, se sugirió un origen de materia oscura. Bulbul y sus colegas también informaron la existencia de la línea 3,5 keV en un estudio de otros 73 cúmulos de galaxias utilizando XMM-Newton.

XMM_Newton.
Crédito: ESA
La trama de este cuento de materia oscura se espesó cuando solo una semana después el equipo de Bulbul presentó un grupo diferente, dirigido por Alexey Boyarsky de la Universidad de Leiden en los Países Bajos, informó evidencia de una línea de emisión de 3.5 keV en observaciones XMM-Newton de la galaxia Messier 31 y las afueras del grupo Perseo, confirmando el Bulbul et al. resultado.

Sin embargo, estos dos resultados fueron controvertidos, con otros astrónomos que más tarde detectaron la línea de 3,5 keV al observar otros objetos, y algunos no pudieron detectarlo. El debate pareció resolverse en 2016, cuando Hitomi, especialmente diseñado para observar características detalladas como la emisión de líneas en los espectros de rayos X de fuentes cósmicas, no detectó la línea de 3.5 keV en el grupo Perseus.

"Uno podría pensar que cuando Hitomi no vio la línea de 3.5 keV, simplemente habría tirado la toalla para esta línea de investigación", dijo la coautora Francesca Day, también de Oxford. "Por el contrario, aquí es donde, como en cualquier buena historia, se produjo un giro interesante en la trama".

Conlon y sus colegas observaron que el telescopio Hitomi tenía imágenes mucho más difusas que Chandra, por lo que sus datos sobre el cúmulo Perseus están compuestos por una mezcla de señales de rayos X de dos fuentes: un componente difuso de gas caliente que envuelve a la gran galaxia en el centro del cúmulo y emisión de rayos X cerca del agujero negro supermasivo en esta galaxia. La visión más nítida de Chandra puede separar la contribución de las dos regiones. Aprovechando esto, Bulbul et al. aisló la señal de rayos X del gas caliente al eliminar las fuentes puntuales de su análisis, incluidos los rayos X del material cerca del agujero negro supermasivo.

Crédito: NASA/CXC/M. Weiss.

Sin embargo, un nuevo análisis de los datos de Chandra realizado por un equipo de la Universidad de Oxford ofrece una nueva perspectiva de este debate. El último trabajo muestra que la absorción de rayos X a una energía de 3,5 keV se detecta al observar la región que rodea el agujero negro supermasivo en el centro de Perseo. Esto sugiere que las partículas de materia oscura en el cúmulo absorben y emiten rayos X (vea la impresión de nuestro artista para un diagrama que ayuda a explicar este comportamiento, donde se muestran rayos X de 3,5 keV). Si el nuevo modelo resulta ser correcto, podría proporcionar un camino para que los científicos algún día identifiquen la verdadera naturaleza de la materia oscura. 

Para los siguientes pasos, los astrónomos necesitarán más observaciones del cúmulo de Perseus y otros similares con los telescopios de rayos X actuales y los que se planean para la próxima década y más allá.Para probar si esta diferencia importaba, el equipo de Oxford volvió a analizar los datos de Chandra desde cerca del agujero negro en el centro del conglomerado Perseus tomado en 2009. Encontraron algo sorprendente: evidencia de un déficit en lugar de un excedente de rayos X a 3,5 keV. Esto sugiere que algo en Perseo está absorbiendo rayos X con esta energía exacta. Cuando los investigadores simularon el espectro de Hitomi agregando esta línea de absorción a la línea de emisión de gas caliente observada con Chandra y XMM-Newton, no encontraron evidencia en el espectro sumado para la absorción o emisión de rayos X a 3,5 keV, consistente con las observaciones de Hitomi.

El desafío es explicar este comportamiento: detectar la absorción de la luz de rayos X cuando se observa el agujero negro y la emisión de luz de rayos X con la misma energía cuando se mira el gas caliente en ángulos más grandes lejos del agujero negro.

Telescopio espacial de Rayos X Hitomi.
Fue dado por perdido el 26 de marzo de 2.016 con solo apenas
dos meses de servicio.
Crédito: JAXA.
De hecho, tal comportamiento es bien conocido por los astrónomos que estudian las estrellas y nubes de gas con telescopios ópticos. La luz de una estrella rodeada por una nube de gas a menudo muestra líneas de absorción producidas cuando la luz estelar de una energía específica es absorbida por átomos en la nube de gas. La absorción patea los átomos desde un estado de baja a alta energía. El átomo vuelve rápidamente al estado de baja energía con la emisión de luz de una energía específica, pero la luz se vuelve a emitir en todas las direcciones, produciendo una pérdida neta de luz a la energía específica (una línea de absorción) en el espectro observado de la estrella En contraste, una observación de una nube en una dirección alejada de la estrella detectaría solo la luz re-emitida, o fluorescente en una energía específica, que se mostraría como una línea de emisión.

El equipo de Oxford sugiere en su informe que las partículas de materia oscura pueden ser como los átomos al tener dos estados de energía separados por 3.5 keV. Si es así, podría observarse una línea de absorción a 3,5 keV cuando se observa en ángulos cercanos a la dirección del agujero negro, y una línea de emisión cuando se mira el gas caliente del clúster a grandes ángulos lejos del agujero negro.

"Esta no es una simple imagen para pintar, pero es posible que hayamos encontrado una forma de explicar las inusuales señales de rayos X provenientes de Perseo y descubrir una pista sobre qué es realmente la materia oscura", dijo el coautor Nicholas Jennings. , también de Oxford.

Para escribir el próximo capítulo de esta historia, los astrónomos necesitarán más observaciones sobre el grupo Perseus y otros similares. Por ejemplo, se necesitan más datos para confirmar la realidad de la caída y para excluir una posibilidad más mundana, a saber, que tenemos una combinación de un efecto instrumental inesperado y una baja estadísticamente improbable en los rayos X a una energía de 3,5 keV. Chandra, XMM-Newton y futuras misiones de rayos X continuarán observando cúmulos para abordar el misterio de la materia oscura.

Un artículo que describe estos resultados se publicó en Physical Review D el 19 de diciembre de 2017 y hay una versión impresa disponible en línea. Los otros coautores del artículo son Sven Krippendorf y Markus Rummel, ambos de Oxford. El Centro Marshall para Vuelos Espaciales de la NASA en Huntsville, Alabama, administra el programa Chandra para la Dirección de Misiones Científicas de la NASA en Washington. El Observatorio Astrofísico Smithsonian de Cambridge, Massachusetts, controla la ciencia y las operaciones de vuelo de Chandra.


Otros materiales sobre los hallazgos están disponibles en:
http://chandra.si.edu/photo/2017/dark/

Para obtener más imágenes de Chandra, multimedia y materiales relacionados, visite:
http://www.nasa.gov/chandra

Comunicado de prensa. 20 de diciembre del 2.017

Contactos de medios:
Megan Watzke
Centro de rayos X Chandra, Cambridge, Massachusetts.
617-496-7998
mwatzke@cfa.harvard.edu

Crédito:
Rayos X: NASA/CXO/Oxford University/J. Conlon et al. 
Radio: NRAO/AUI/NSF/Univ. of Montreal/Gendron-Marsolais et al. 
Óptico: NASA/ESA/IoA/A. Fabian et al.; DSS