InSight de la NASA encuentra tres grandes terremotos gracias al polvo de paneles solares

El módulo de aterrizaje limpió suficiente polvo de un panel solar para mantener encendido el sismómetro durante el verano, lo que permitió a los científicos estudiar los tres terremotos más grandes que han visto en Marte.

Esta es la segunda selfie completa de NASA InSight en Marte. Desde que se tomó su primera selfie, el módulo de aterrizaje ha retirado su sonda de calor y el sismómetro de su plataforma, colocándolos en la superficie marciana; una fina capa de polvo ahora también cubre la nave espacial. Esta selfie es un mosaico compuesto por 14 imágenes tomadas el 15 de marzo y el 11 de abril, los días 106 y 133 marcianos, o soles, de la misión, por la cámara de despliegue de instrumentos de InSight, ubicada en su brazo robótico. La primera selfie de InSight mostró sus instrumentos todavía en la cubierta. Ahora que están retirados, el espectador puede ver el sensor de presión de aire de la nave espacial (objeto blanco en el centro), la caja de sujeción para su sismómetro y la correa para su sonda de calor corriendo por la cubierta. También es visible su brazo robótico y su garra. JPL administra InSight para la Dirección de Misiones Científicas de la NASA. InSight es parte del Programa Discovery de la NASA, administrado por el Centro Marshall de Vuelos Espaciales de la agencia en Huntsville, Alabama. Lockheed Martin Space en Denver construyó la nave espacial InSight, incluida la etapa de crucero y el módulo de aterrizaje, y respalda las operaciones de la nave espacial para la misión. Varios socios europeos, incluidos el Centre National d'Études Spatiales (CNES) de Francia y el Centro Aeroespacial Alemán (DLR), están apoyando la misión InSight. CNES proporcionó el instrumento Sismic Experiment for Interior Structure (SEIS) a la NASA, con el investigador principal del IPGP (Institut de Physique du Globe de Paris). Las contribuciones significativas para SEIS provinieron de IPGP; el Instituto Max Planck para la Investigación del Sistema Solar (MPS) en Alemania; el Instituto Federal Suizo de Tecnología (ETH Zurich) en Suiza; Imperial College London y Oxford University en el Reino Unido; y JPL. DLR proporcionó el instrumento Paquete de propiedades físicas y flujo de calor (HP3), con contribuciones significativas del Centro de Investigación Espacial (CBK) de la Academia de Ciencias de Polonia y Astronika en Polonia. El Centro de Astrobiología (CAB) de España suministró los sensores de temperatura y viento. CRÉDITO: NASA / JPL-Caltech

El 18 de septiembre, el módulo de aterrizaje InSight de la NASA celebró su día marciano número 1.000, o sol, midiendo uno de los marsquakes (terremotos marcianos) más grandes y duraderos que haya detectado la misión. Se estima que el temblor fue de una magnitud aproximada de 4,2 y se sacudió durante casi una hora y media.

Este es el tercer gran terremoto que InSight ha detectado en un mes: el 25 de agosto, el sismómetro de la misión detectó dos terremotos de magnitud 4,2 y 4,1. A modo de comparación, un terremoto de magnitud 4,2 tiene cinco veces la energía del poseedor del récord anterior de la misión, un terremoto de magnitud 3,7 detectado en 2019.

La misión estudia las ondas sísmicas para aprender más sobre el interior de Marte. Las ondas cambian a medida que viajan a través de la corteza, el manto y el núcleo de un planeta, lo que proporciona a los científicos una forma de mirar profundamente por debajo de la superficie. Lo que aprendan puede arrojar luz sobre cómo se forman todos los mundos rocosos, incluida la Tierra y su Luna.

Es posible que los terremotos no se hubieran detectado si la misión no hubiera tomado medidas a principios de año, ya que la órbita altamente elíptica de Marte lo alejó más del Sol. Las temperaturas más bajas obligaron a la nave espacial a depender más de sus calentadores para mantenerse caliente; eso, además de la acumulación de polvo en los paneles solares de InSight, ha reducido los niveles de potencia del módulo de aterrizaje, lo que requiere la misión de conservar energía apagando temporalmente ciertos instrumentos.

El equipo logró mantener encendido el sismómetro adoptando un enfoque contrario a la intuición: utilizaron el brazo robótico de InSight para hacer escurrir arena cerca de un panel solar con la esperanza de que, a medida que las ráfagas de viento lo llevaran a través del panel, los gránulos barrieran parte del polvo. El plan funcionó y, a lo largo de varias actividades de limpieza del polvo, el equipo vio que los niveles de energía se mantenían bastante estables. Ahora que Marte se está acercando al Sol una vez más, la energía está comenzando a aumentar lentamente.

"Si no hubiéramos actuado rápidamente a principios de este año, es posible que nos hubiéramos perdido una gran ciencia", dijo el investigador principal de InSight, Bruce Banerdt, del Laboratorio de Propulsión a Chorro de la NASA en el sur de California, que lidera la misión. "Incluso después de más de dos años, Marte parece habernos dado algo nuevo con estos dos terremotos, que tienen características únicas".

Esta imagen muestra el escudo térmico y contra el viento abovedado de InSight, que cubre su sismómetro. La imagen fue tomada el 110 ° día marciano, o sol, de la misión. El sismómetro se llama Experimento sísmico para estructura interior o SEIS. JPL administra InSight para la Dirección de Misiones Científicas de la NASA. InSight es parte del Programa Discovery de la NASA, administrado por el Centro Marshall de Vuelos Espaciales de la agencia en Huntsville, Alabama. Lockheed Martin Space en Denver construyó la nave espacial InSight, incluida la etapa de crucero y el módulo de aterrizaje, y respalda las operaciones de la nave espacial para la misión. Varios socios europeos, incluidos el Centre National d'Études Spatiales (CNES) de Francia y el Centro Aeroespacial Alemán (DLR), están apoyando la misión InSight. El CNES proporcionó SEIS a la NASA, con el investigador principal del IPGP (Institut de Physique du Globe de Paris). Las contribuciones significativas para SEIS provinieron de IPGP; el Instituto Max Planck para la Investigación del Sistema Solar (MPS) en Alemania; el Instituto Federal Suizo de Tecnología (ETH Zurich) en Suiza; Imperial College London y Oxford University en el Reino Unido; y JPL. DLR proporcionó el instrumento Paquete de propiedades físicas y flujo de calor (HP3), con contribuciones significativas del Centro de Investigación Espacial (CBK) de la Academia de Ciencias de Polonia y Astronika en Polonia. El Centro de Astrobiología (CAB) de España suministró los sensores de temperatura y viento. CRÉDITO: NASA / JPL-Caltech

Temblor Insights

Si bien el terremoto del 18 de septiembre aún se está estudiando, los científicos ya saben más sobre los terremotos del 25 de agosto: el evento de magnitud 4,2 ocurrió a unas 5.280 millas (8.500 kilómetros) de InSight, el temblor más distante que el módulo de aterrizaje ha detectado hasta ahora.

Los científicos están trabajando para identificar la fuente y en qué dirección viajaron las ondas sísmicas, pero saben que el temblor ocurrió demasiado lejos para haberse originado donde InSight detectó casi todos sus grandes terremotos anteriores: Cerberus Fossae, una región de aproximadamente 1.000 millas (1.609 kilómetros) lejos donde la lava pudo haber fluido en los últimos millones de años. Una posibilidad especialmente intrigante es Valles Marineris, el sistema de cañones épicamente largo que deja cicatrices en el ecuador marciano. El centro aproximado de ese sistema de cañones está a 6.027 millas (9.700 kilómetros) de InSight.

Para sorpresa de los científicos, los terremotos del 25 de agosto también fueron de dos tipos diferentes. El terremoto de magnitud 4,2 estuvo dominado por vibraciones lentas de baja frecuencia, mientras que las vibraciones rápidas de alta frecuencia caracterizaron el terremoto de magnitud 4,1. El terremoto de magnitud 4,1 también estuvo mucho más cerca del módulo de aterrizaje, a solo unas 575 millas (925 kilómetros) de distancia.

Esas son buenas noticias para los sismólogos: registrar diferentes terremotos desde un rango de distancias y con diferentes tipos de ondas sísmicas proporciona más información sobre la estructura interna de un planeta. Este verano, los científicos de la misión utilizaron datos anteriores del terremoto para detallar la profundidad y el grosor de la corteza y el manto del planeta, además del tamaño de su núcleo fundido.

A pesar de sus diferencias, los dos terremotos de agosto tienen algo en común además de ser grandes: ambos ocurrieron durante el día, el momento más ventoso y, para un sismómetro, más ruidoso en Marte. El sismómetro de InSight suele encontrar marsquames por la noche, cuando el planeta se enfría y los vientos son bajos. Pero las señales de estos terremotos fueron lo suficientemente grandes como para elevarse por encima de cualquier ruido causado por el viento.

De cara al futuro, el equipo de la misión está considerando si realizar más limpiezas de polvo después de la conjunción solar de Marte, cuando la Tierra y Marte están en lados opuestos del Sol. Debido a que la radiación del Sol puede afectar las señales de radio, interfiriendo con las comunicaciones, el equipo dejará de enviar comandos al módulo de aterrizaje el 29 de septiembre, aunque el sismómetro continuará escuchando terremotos durante toda la conjunción.

Más sobre la misión

JPL administra InSight para la Dirección de Misiones Científicas de la NASA. InSight es parte del programa Discovery de la NASA, administrado por el Marshall Space Flight Center de la agencia en Huntsville, Alabama. Lockheed Martin Space en Denver construyó la nave espacial InSight, incluida la etapa de crucero y el módulo de aterrizaje, y respalda las operaciones de la nave espacial para la misión.

Varios socios europeos, incluido el Centre National d'Études Spatiales (CNES) de Francia y el Centro Aeroespacial Alemán (DLR), están apoyando la misión InSight. CNES proporcionó el instrumento Sismic Experiment for Interior Structure (SEIS) a la NASA, con el investigador principal del IPGP (Institut de Physique du Globe de Paris). Las contribuciones significativas para SEIS provinieron de IPGP; el Instituto Max Planck para la Investigación del Sistema Solar (MPS) en Alemania; el Instituto Federal Suizo de Tecnología (ETH Zurich) en Suiza; Imperial College London y Oxford University en el Reino Unido; y JPL. DLR proporcionó el instrumento Paquete de propiedades físicas y flujo de calor (HP3), con contribuciones significativas del Centro de Investigación Espacial (CBK) de la Academia de Ciencias de Polonia y Astronika en Polonia. El Centro de Astrobiología (CAB) de España suministró los sensores de temperatura y viento.

Contacto con los medios de comunicación

Andrew bueno

Laboratorio de propulsión a chorro, Pasadena, California.

818-393-2433

andrew.c.good@jpl.nasa.gov


Karen Fox / Alana Johnson

Sede de la NASA, Washington

301-286-6284 / 202-358-1501

karen.c.fox@nasa.gov / alana.r.johnson@nasa.gov

• Publicado en NASA-JPL el 22 de septiembre del 2021, enlace publicación.

Lo más visto del mes