Electromagnetismo

El electromagnetismo es la rama de la física que estudia y unifica los fenómenos eléctricos y magnéticos en una sola teoría. El electromagnetismo describe la interacción de partículas cargadas con campos eléctricos y magnéticos. La interacción electromagnética es una de las cuatro fuerzas fundamentales del universo conocido. Las partículas cargadas interactúan electromagnéticamente mediante el intercambio de fotones.

De André Oliva - Trabajo propio, Dominio público, https://commons.wikimedia.org/w/index.php?curid=37736903

El electromagnetismo abarca diversos fenómenos del mundo real como por ejemplo la luz. La luz es un campo electromagnético oscilante que se irradia desde partículas cargadas aceleradas. Aparte de la gravedad, la mayoría de las fuerzas en la experiencia cotidiana son consecuencia de electromagnetismo.

Los principios del electromagnetismo encuentran aplicaciones en diversas disciplinas afines, tales como las microondas, antenas, máquinas eléctricas, comunicaciones por satélite, bioelectromagnetismo, plasmas, investigación nuclear, la fibra óptica, la interferencia y la compatibilidad electromagnéticas, la conversión de energía electromecánica, la meteorología por radar, y la observación remota. Los dispositivos electromagnéticos incluyen transformadores, relés, radio/TV, teléfonos, motores eléctricos, líneas de transmisión, guías de onda y láseres.

Los fundamentos de la teoría electromagnética fueron presentados por Michael Faraday y formulados por primera vez de modo completo por James Clerk Maxwell en 1865. La formulación consiste en cuatro ecuaciones diferenciales vectoriales que relacionan el campo eléctrico, el campo magnético y sus respectivas fuentes materiales (corriente eléctrica, polarización eléctrica y polarización magnética), conocidas como ecuaciones de Maxwell, lo que ha sido considerada como la «segunda gran unificación de la física», siendo la primera realizada por Isaac Newton.

La teoría electromagnética se puede dividir en electrostática —el estudio de las interacciones entre cargas en reposo— y la electrodinámica —el estudio de las interacciones entre cargas en movimiento y la radiación. La teoría clásica del electromagnetismo se basa en la fuerza de Lorentz y en las ecuaciones de Maxwell.

El electromagnetismo es una teoría de campos; es decir, las explicaciones y predicciones que provee se basan en magnitudes físicas vectoriales o tensoriales dependientes de la posición en el espacio y del tiempo. El electromagnetismo describe los fenómenos físicos macroscópicos en los cuales intervienen cargas eléctricas en reposo y en movimiento, usando para ello campos eléctricos y magnéticos y sus efectos sobre las sustancias sólidas, líquidas y gaseosas. Por ser una teoría macroscópica, es decir, aplicable a un número muy grande de partículas y a distancias grandes respecto de las dimensiones de estas, el electromagnetismo no describe los fenómenos atómicos y moleculares. La electrodinámica cuántica proporciona la descripción cuántica de esta interacción, que puede ser unificada con la interacción nuclear débil según el modelo electrodébil.

Ramas del electromagnetismo:

Electrostática, Magnetostática, Electrodinámica clásica, Electrodinámica relativista, Electrodinámica cuántica

Radiación electromagnética

La radiación electromagnética es un tipo de campo electromagnético variable, es decir, una combinación de campos eléctricos y magnéticos oscilantes, que se propagan a través del espacio transportando energía de un lugar a otro. Desde el punto de vista clásico, la radiación electromagnética son las ondas electromagnéticas generadas por las fuentes del campo electromagnético y que se propagan a la velocidad de la luz. La generación y la propagación de estas ondas son compatibles con el modelo de ecuaciones matemáticas definido en las ecuaciones de Maxwell.

La radiación de tipo electromagnético puede manifestarse de diversas maneras como ondas de radio, microondas, radiación infrarroja, luz visible, radiación ultravioleta, rayos X y rayos gamma. A diferencia de otros tipos de onda, como el sonido, que necesitaran un medio material para propagarse, la radiación electromagnética se puede propagar en el vacío. En el siglo XIX se pensaba que existía una sustancia indetectable, llamada éter, que ocupaba el vacío y servía de medio de propagación de las ondas electromagnéticas. El estudio teórico de la radiación electromagnética se denomina electrodinámica y es un subcampo del electromagnetismo.

Las ondas electromagnéticas pueden ser generadas por distintas fuentes como son: cargas aceleradas, dipolos oscilantes, corrientes variables en distintos tipos de antenas entre otras. La forma de las ondas electromagnéticas depende de la fuente que las genera y de la distancia recorrida por las mismas.

El comportamiento de las radiaciones electromagnéticas depende de su longitud de onda. Cuando la radiación electromagnética interactúa con átomos y moléculas puntuales, su comportamiento también depende de la cantidad de energía por quantum que lleve.


Múltiplos del Sistema Internacional para hercio (Hz)
SubmúltiplosMúltiplos
ValorSímboloNombreValorSímboloNombre
10−1 HzdHzdecihercio101 HzdaHzdecahercio
10−2 HzcHzcentihercio102 HzhHzhectohercio
10−3 HzmHzmilihercio103 HzkHzkilohercio
10−6 HzµHzmicrohercio106 HzMHzmegahercio
10−9 HznHznanohercio109 HzGHzgigahercio
10−12 HzpHzpicohercio1012 HzTHzterahercio
10−15 HzfHzfemtohercio1015 HzPHzpetahercio
10−18 HzaHzattohercio1018 HzEHzexahercio
10−21 HzzHzzeptohercio1021 HzZHzzettahercio
10−24 HzyHzyoctohercio1024 HzYHzyottahercio
Los prefijos más comunes están en negrita.


Espectro electromagnético

Se denomina espectro electromagnético a la distribución energética del conjunto de las ondas electromagnéticas. Referido a un objeto se denomina espectro electromagnético o simplemente espectro a la radiación electromagnética que emite (espectro de emisión) o absorbe (espectro de absorción) una sustancia. Dicha radiación sirve para identificar la sustancia de manera análoga a una huella dactilar. Los espectros se pueden observar mediante espectroscopios que, además de permitir ver el espectro, permiten realizar medidas sobre el mismo, como son la longitud de onda, la frecuencia y la intensidad de la radiación.

El espectro electromagnético se extiende desde la radiación de menor longitud de onda, como los rayos gamma y los rayos X, pasando por la radiación ultravioleta, la luz visible y la radiación infrarroja, hasta las ondas electromagnéticas de mayor longitud de onda, como son las ondas de radio. Si bien el límite para la longitud de onda más pequeña posible no sería la longitud de Planck (porque el tiempo característico de cada modalidad de interacción es unas 1020 veces mayor al instante de Planck y, en la presente etapa cosmológica, ninguna de ellas podría oscilar con la frecuencia necesaria para alcanzar aquella longitud de onda), se cree que el límite máximo sería el tamaño del Universo (véase Cosmología física) aunque formalmente el espectro electromagnético es infinito y continuo.

El espectro electromagnético cubre longitudes de onda muy variadas. Existen frecuencias de 30 Hz y menores que son relevantes en el estudio de ciertas nebulosas. Por otro lado se conocen frecuencias cercanas a 2,9×1027 Hz, que han sido detectadas provenientes de fuentes astrofísicas.

Longitud de onda: En física, se conoce como longitud de onda la distancia que recorre una perturbación periódica que se propaga por un medio en un ciclo.

Frecuencia: La frecuencia es el número de repeticiones por unidad de tiempo de cualquier evento periódico. Según el Sistema Internacional (SI), la frecuencia se mide en hercios (Hz), en honor a Heinrich Rudolf Hertz. Un hercio es la frecuencia de un suceso o fenómeno repetido por segundo. Así, un fenómeno con una frecuencia de dos hercios se repite dos veces por segundo. Esta unidad se llamó originalmente «ciclo por segundo» 

Bandas del espectro electromagnético

Para su estudio, el espectro electromagnético se divide en segmentos o bandas, aunque esta división es inexacta. Existen ondas que tienen una frecuencia, pero varios usos, por lo que algunas frecuencias pueden quedar en ocasiones incluidas en dos rangos.

RegiónLongitud de onda (m)Frecuencia (Hz)Energía (J)
Rayos gamma< 10x10−12m> 30,0x1018Hz> 20·10−15 J
Rayos X< 10x10−9m> 30,0x1015Hz> 20·10−18 J
Ultravioleta extremo< 200x10−9m> 1,5x1015Hz> 993·10−21 J
Ultravioleta cercano< 380x10−9m> 7,89x1014Hz> 523·10−21 J
Espectro Visible< 780x10−9m> 384x1012Hz> 255·10−21 J
Infrarrojo cercano< 2,5x10−6m> 120x1012Hz> 79·10−21 J
Infrarrojo medio< 50x10−6m> 6,00x1012Hz> 4·10−21 J
Infrarrojo lejano/submilimétrico< 1x10−3m> 300x109Hz> 200·10−24 J
Microondas< 10−2m> 3x108Hzn. 1> 2·10−24 J
Ultra Alta Frecuencia-Radio< 1 m> 300x106Hz> 19.8·10−26 J
Muy Alta Frecuencia-Radio< 10 m> 30x106Hz> 19.8·10−28 J
Onda Corta - Radio< 180 m> 1,7x106Hz> 11.22·10−28 J
Onda Media - Radio< 650 m> 650x103Hz> 42.9·10−29 J
Onda Larga - Radio< 10x103m> 30x103Hz> 19.8·10−30 J
Muy Baja Frecuencia - Radio> 10x103m< 30x103Hz< 19.8·10−30 J

Radiofrecuencia

Frecuencias extremadamente bajas: Llamadas ELF (Extremely Low Frequencies), son aquellas que se encuentran en el intervalo de 3 a 30 Hz. Este rango es equivalente a aquellas frecuencias del sonido en la parte más baja (grave) del intervalo de percepción del oído humano. Cabe destacar aquí que el oído humano percibe ondas sonoras, no electromagnéticas; sin embargo se establece la analogía para poder hacer una mejor comparación.

Longitud de onda de < 1 m a > 10x103m

Microondas.

La definición del espectro de microondas depende de la fuente. Varios autores consideran que las microondas abarcan las frecuencias entre 300 MHz y 300 GHz, pero los estándares IEC 60050 e IEEE 100 sitúan el espectro entre 1 GHz y 300 GHz.​ Estas frecuencias abarcan parte del rango de UHF y todo el rango de SHF y EHF. Estas ondas se utilizan en numerosos sistemas, como múltiples dispositivos de transmisión de datos, radares y hornos microondas.

Longitud de onda < 10−2m

Infrarrojo

Las ondas infrarrojas están en el rango de 0,7 a 1000 micrómetros. La radiación infrarroja se asocia generalmente con el calor. Ellas son producidas por cuerpos que generan calor, aunque a veces pueden ser generadas por algunos diodos emisores de luz y algunos láseres.

Las señales son usadas para algunos sistemas especiales de comunicaciones, como en astronomía para detectar estrellas y otros cuerpos en los que se usan detectores de calor para descubrir cuerpos móviles en la oscuridad. También se usan en los mandos a distancia de los televisores y otros aparatos, en los que un transmisor de estas ondas envía una señal codificada al receptor del televisor. En últimas fechas se ha estado implementando conexiones de área local LAN por medio de dispositivos que trabajan con infrarrojos, pero debido a los nuevos estándares de comunicación estas conexiones han perdido su versatilidad.

La longitud de onda va desde el infrarrojo lejano < 1x10−3m pasando por el  infrarrojo medio < 50x10−6m llegando al infrarrojo cercano < 2,5x10−6m

Espectro visible

Por encima de la frecuencia de las radiaciones infrarrojas se encuentra lo que comúnmente es llamado luz, un tipo especial de radiación electromagnética que tiene una longitud de onda en el intervalo de 0,4 a 0,8 micrómetros (violeta al rojo). Este es el rango en el que el sol y las estrellas similares emiten la mayor parte de su radiación. Probablemente, no es una coincidencia que el ojo humano sea sensible a las longitudes de onda que emite el sol con más fuerza. Las unidades usuales para expresar las longitudes de onda son el Angstrom y el nanómetro. La luz que vemos con nuestros ojos es realmente una parte muy pequeña del espectro electromagnético. La radiación electromagnética con una longitud de onda entre 380 nm y 760 nm (790-400 terahercios) es detectada por el ojo humano y se percibe como luz visible. Otras longitudes de onda, especialmente en el infrarrojo cercano (más de 760 nm) y ultravioleta (menor de 380 nm) también se refiere a veces como la luz, aun cuando la visibilidad a los seres humanos no es relevante. Si la radiación que tiene una frecuencia en la región visible del espectro electromagnético se refleja en un objeto, por ejemplo, un tazón de fruta, y luego golpea los ojos, esto da lugar a la percepción visual de la escena. Nuestro sistema visual del cerebro procesa la multitud de frecuencias que se reflejan en diferentes tonos y matices, y a través de este fenómeno psicofísico, no del todo entendido, la mayoría de la gente percibe un tazón de fruta; un arco iris muestra la óptica (visible) del espectro electromagnético. En la mayoría de las longitudes de onda, sin embargo, la radiación electromagnética no es visible directamente, aunque existe tecnología capaz de manipular y visualizar una amplia gama de longitudes de onda.

La luz puede usarse para diferentes tipos de comunicaciones. Las ondas electromagnéticas pueden modularse y transmitirse a través de fibras ópticas, lo cual resulta en una menor atenuación de la señal con respecto a la transmisión por el espacio libre.

Ultravioleta

La luz ultravioleta cubre el intervalo de 4 a 400 nm. El Sol es una importante fuente emisora de rayos en esta frecuencia, los cuales causan cáncer de piel a exposiciones prolongadas. Este tipo de onda no se usa en las telecomunicaciones, sus aplicaciones son principalmente en el campo de la medicina.

Ultravioleta cercano <  380 x 10−9m al ultravioleta lejano o extremo < 200 x 10−9m

Rayos X

La denominación rayos X designa a una radiación electromagnética, invisible, capaz de atravesar cuerpos opacos y de impresionar las películas fotográficas. La longitud de onda está entre 10 a 0,01 nanómetros, correspondiendo a frecuencias en el rango de 30 a 30 000 PHz  > 30,0 x 1015Hz (de 50 a 5000 veces la frecuencia de la luz visible).

Longitud de onda < 10 x 10−9m

Rayos gamma

La radiación gamma es un tipo de radiación electromagnética producida generalmente por elementos radiactivos o procesos subatómicos como la aniquilación de un par positrón-electrón. Este tipo de radiación de tal magnitud también es producida en fenómenos astrofísicos de gran violencia.

Debido a las altas energías que poseen, los rayos gamma constituyen un tipo de radiación ionizante capaz de penetrar en la materia más profundamente que la radiación alfa o beta. Dada su alta energía pueden causar grave daño al núcleo de las células, por lo que son usados para esterilizar equipos médicos y alimentos.

Longitud de onda < 10 x 10−12 m y frecuencia > 30,0 x 1018Hz

Lo más visto del mes