Un equipo de astrónomos toma la primera imagen en primer plano de una estrella fuera de nuestra galaxia

"Por primera vez, hemos logrado tomar una imagen ampliada de una estrella moribunda en una galaxia fuera de nuestra propia Vía Láctea", afirma Keiichi Ohnaka, astrofísico de la Universidad Andrés Bello, en Chile. Ubicada a la impresionante distancia de 160.000 años luz de nosotros, la estrella WOH G64 fue fotografiada gracias a la impresionante nitidez ofrecida por el Interferómetro del Very Large Telescope Interferometer (VLTI de ESO). Las nuevas observaciones revelan una estrella expulsando gas y polvo, en las últimas etapas antes de convertirse en una supernova.

Esta es una imagen de la estrella WOH G64, tomada por el instrumento GRAVITY, instalado en el Interferómetro del Very Large Telescope del Observatorio Europeo Austral (VLTI de ESO). Esta es la primera imagen en primer plano de una estrella fuera de nuestra propia galaxia, la Vía Láctea. La estrella se encuentra en la Gran Nube de Magallanes, a más de 160.000 años luz de distancia. El óvalo brillante en el centro de esta imagen es un capullo polvoriento que envuelve a la estrella. Un anillo elíptico más débil a su alrededor podría ser el borde interior de un toroide polvoriento, pero se necesitan más observaciones para confirmar esta característica. Crédito: ESO/K. Ohnaka et al.

"Descubrimos una envoltura en forma de huevo que rodea muy de cerca a la estrella", declara Ohnaka, autor principal de un estudio que da a conocer estas observaciones y publicado en la revista Astronomy & Astrophysics. "Estamos emocionados porque esto puede estar relacionado con la drástica eyección de material de la estrella moribunda antes de una explosión de supernova".

Si bien la comunidad astronómica ha obtenido alrededor de dos docenas de imágenes ampliadas de estrellas en nuestra galaxia, revelando sus propiedades, hay muchas otras  estrellas que habitan dentro de otras galaxias, tan lejos que observar incluso una de ellas en detalle supone un desafío extremo. Hasta ahora.

La estrella recién fotografiada, WOH G64, se encuentra dentro de la Gran Nube de Magallanes, una de las pequeñas galaxias que orbita la Vía Láctea. La comunidad astronómica conoce esta estrella desde hace décadas y la han bautizado como la "estrella gigante". Con un tamaño aproximado de 2000 veces el de nuestro Sol, WOH G64 está clasificada como una supergigante roja.

El equipo de Ohnaka llevaba mucho tiempo interesado en esta estrella gigante. En 2005 y 2007, utilizaron el VLTI de ESO, situado en el desierto de Atacama, en Chile, para aprender más sobre las características de la estrella, y continuaron estudiándola en los años posteriores. Pero conseguir una imagen real de la estrella seguía siendo algo difícil de alcanzar.

Para obtener la imagen deseada, el equipo tuvo que esperar al desarrollo de uno de los instrumentos de segunda generación del VLT, GRAVITY. Después de comparar sus nuevos resultados con otras observaciones anteriores de WOH G64, se sorprendieron al descubrir que la estrella se había vuelto más tenue durante la última década.

"Hemos descubierto que la estrella ha experimentado un cambio significativo en los últimos 10 años, lo que nos brinda una oportunidad única de presenciar la vida de una estrella en tiempo real", afirma Gerd Weigelt, profesor de astronomía en el Instituto Max Planck de Radioastronomía en Bonn (Alemania) y coautor del estudio. En sus etapas finales de vida, las supergigantes rojas como WOH G64 se desprenden de sus capas externas de gas y polvo en un proceso que puede durar miles de años. "Esta estrella es una de las más extremas de su tipo, y cualquier cambio drástico puede acercarla a un final explosivo", añade el coautor Jacco van Loon, director del Observatorio Keele de la Universidad de Keele (Reino Unido) que ha estado observando WOH G64 desde la década de 1990.

El equipo cree que estos materiales lanzados por la estrella también pueden ser responsables del oscurecimiento y de la forma inesperada de la envoltura de polvo que rodea a la estrella. La nueva imagen muestra que la envoltura está estirada, lo que sorprendió a la comunidad científica, que esperaba una forma diferente basada en observaciones anteriores y modelos informáticos. El equipo cree que la forma de huevo de la envoltura podría explicarse por la pérdida de material de la estrella o por la influencia de una estrella compañera aún no descubierta.

A medida que la estrella se vuelve más débil, obtener más imágenes de cerca de ella se vuelve cada vez más difícil, incluso para el VLTI. No obstante, las actualizaciones planificadas para la instrumentación del telescopio, como el futuro GRAVITY+, prometen cambiar esto en poco tiempo. "Para comprender lo que está sucediendo en la estrella, serán fundamentales las observaciones de seguimiento similares que se lleven a cabo con instrumentos de ESO", concluye Ohnaka.

Información adicional

El Interferómetro del Very Large Telescope de ESO es capaz de combinar la luz recogida por los telescopios del Very Large Telescope (VLT) de ESO, ya sea en las cuatro Unidades de Telescopio de 8 metros o en los cuatro Telescopios Auxiliares más pequeños, creando imágenes muy detalladas del cosmos. Esto convierte al VLTI en un telescopio "virtual" con una resolución equivalente a la distancia máxima entre los telescopios individuales. Este proceso es muy complejo y necesita de instrumentos especialmente dedicados a esta tarea. En 2005 y 2007, el equipo de Ohnaka tuvo acceso a la primera generación de estos instrumentos: MIDI. Si bien fueron impresionantes para su época, esas observaciones con MIDI solo combinaron la luz de dos telescopios. Ahora, los investigadores e investigadoras tienen acceso a GRAVITY, un instrumento de segunda generación capaz de captar la luz de cuatro telescopios. Su sensibilidad y resolución mejoradas hicieron posible la imagen de WOH G64. Pero hay más por venir. GRAVITY+ es una actualización planificada de GRAVITY que podrá aprovechar diferentes actualizaciones tecnológicas realizadas en el VLTI y el VLT. Así, el VLTI podrá ver objetos más débiles y lejanos de lo que se ha alcanzado nunca.

Esta investigación fue presentada en un artículo publicado en la revista Astronomy and Astrophysics (https://www.aanda.org/10.1051/0004-6361/202451820).

El equipo está compuesto por: K. Ohnaka (Instituto de Astrofísica, Departamento de Física y Astronomía, Facultad de Ciencias Exactas, Universidad Andrés Bello, Chile); K.-H. Hofmann (Instituto Max Planck de Radioastronomía, Bonn, Alemania [MPIfR]); G. Weigelt (MPIfR); J. Th. van Loon (Laboratorios Lennard-Jones, Universidad de Keele, Reino Unido); D. Schertl (MPIfR); S. R. Goldman (Instituto de Ciencias del Telescopio Espacial, Baltimore, EE.UU.).

El Observatorio Europeo Austral (ESO) pone a disposición de la comunidad científica mundial los medios necesarios para desvelar los secretos del Universo en beneficio de todos. Diseñamos, construimos y operamos observatorios de vanguardia basados en tierra -utilizados por la comunidad astronómica para abordar preguntas emocionantes y difundir la fascinación por la astronomía- y promovemos la colaboración internacional en astronomía. Establecida como organización intergubernamental en 1962, hoy ESO cuenta con el apoyo de 16 Estados Miembros (Alemania, Austria, Bélgica, Dinamarca, España, Finlandia, Francia, Irlanda, Italia, Países Bajos, Polonia, Portugal, Reino Unido, República Checa, Suecia y Suiza), junto con Chile, país anfitrión, y con Australia como socio estratégico. La sede de ESO y su planetario y centro de visitantes, el ESO Supernova, se encuentran cerca de Múnich (Alemania), mientras que el desierto chileno de Atacama, un lugar maravilloso con condiciones únicas para observar el cielo, alberga nuestros telescopios. ESO opera tres sitios de observación: La Silla, Paranal y Chajnantor. En Paranal, ESO opera el Very Large Telescope junto con su interferómetro VLTI (Very Large Telescope Interferometer), y telescopios de rastreo como VISTA. También en Paranal, ESO albergará y operará el Cherenkov Telescope Array South, el observatorio de rayos gamma más grande y sensible del mundo. En Chajnantor, junto con socios internacionales, ESO opera ALMA, una instalación que observa los cielos en el rango milimétrico y submilimétrico. En Cerro Armazones, cerca de Paranal, estamos construyendo "el ojo más grande del mundo para mirar el cielo": el Telescopio Extremadamente Grande de ESO (ELT, Extremely Large Telescope). Desde nuestras oficinas en Santiago (Chile), apoyamos el desarrollo de nuestras operaciones en el país y nos comprometemos con los socios chilenos y con la sociedad chilena.

Las traducciones de las notas de prensa de ESO las llevan a cabo miembros de la Red de Divulgación de la Ciencia de ESO (ESON por sus siglas en inglés), que incluye a expertos en divulgación y comunicadores científicos de todos los países miembros de ESO y de otras naciones.

El nodo español de la red ESON está representado por J. Miguel Mas Hesse y Natalia Ruiz Zelmanovitch.

Enlaces

Contactos

Keiichi Ohnaka

Universidad Andrés Bello

Santiago, Chile

Teléfono: +56-9522 39623

Correo electrónico: k1.ohnaka@gmail.com

Gerd Weigelt

Max Planck Institute for Radio Astronomy

Bonn, Germany

Teléfono: +49 228 525 243

Correo electrónico: gweigelt@mpifr-bonn.mpg.de

Jacco van Loon

Keele University

Keele, UK

Teléfono: +44 1782 733331

Correo electrónico: j.t.van.loon@keele.ac.uk

Bárbara Ferreira

ESO Media Manager

Garching bei München, Germany

Teléfono: +49 89 3200 6670

Móvil: +49 151 241 664 00

Correo electrónico: press@eso.org

José Miguel Mas Hesse 

(Contacto para medios de comunicación en España)

Red de Difusión Científica de ESO y Centro de Astrobiología (CSIC-INTA)

Madrid, Spain

Teléfono: +34 918131196

Correo electrónico: eson-spain@eso.org

Publicado en ESO/España el 21 de noviembre del 2024, enlace publicación.

Lo más visto del mes